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The nonsymmetric Kaluza-Klein and Jordan-Thiry theories are reviewed as 
interesting propositions of physics in higher dimensions. It is shown how a 
dielectric model of confinement can be derived from "interference effects" in 
these theories. It is postulated that the old puzzle of nuclear physics, a-particles, 
can be connected to the skewon field gE~l and the scalar field g' in the 
nonsymmetric Jordan-Thiry theory. Similarities are pointed out between the 
nonsymmetric Jordan-Thiry Lagrangian in the fiat space limit and the soliton 
bag model Lagrangian. Finally the nonsymmetric Jordan-Thiry Lagrangian is 
proposed as the bosonic part of the strong interaction Lagrangian. 

1. INTRODUCTION 

There has been a recent revival of interest in the ideas of T. Kaluza 
and O. Klein on the geometrical unification of gravity (described by General 
Relativity) and other fundamental interactions using many-dimensional 
manifolds (five-dimensional in the original work by Kaluza) (Kaluza, 1921; 
Klein, 1926, 1939). Such an approach seeks the unification of  two major 
principles in physics, local gauge invariance and local coordinate invariance, 
reducing them to the second in a 5-dimensional world. The additional 
dimensions cannot be directly observed. In the present approach, I propose 
a development of  these ideas using the non-Riemannian geometry of 
Einstein's unified field theory (the so-called Einstein-Kaufman theory) 
(Einstein, 1945, 1951; Einstein and Kaufman, 1954; Einstein and Strauss, 
1946; Kaufman, 1955, 1956). 

In the Kaluza-Klein approach there were no "interference effects" 
between gravity and electromagnetism. This theory reproduces the Einstein 
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and Maxwell equations in an already known form. In the non-Abelian 
Kaluza-Klein theory (which unifies the principles of local non-Abelian 
gauge invariance and local coordinate invariance) one faces a fundamental 
problem with the value of the cosmological constant. The cosmological 
constant predicted by the non-Abelian Kaluza-Klein theory is 10127 times 
greater than the upper limit from observational data (Kerner, 1968; Cho, 
1975; Kopczyfiski, 1980). This forces us to abandon Riemannian geometry 
(the Levi-Civita connection) and to use non-Riemannian geometries defined 
on a multidimensional bundle manifold (a gauge manifold). Such geometries 
have been constructed (Kopczyfiski, 1980; Kalinowski, 1983a) and the 
cosmological constant disappears. Unfortunately, all of these approaches 
fail, in that they do not provide any "interference effects" between gravity 
(General Relativity) and Yang-Mills theory. They reproduce the Einstein 
and Yang-Mills equations in an already known form. 

They could provide some "interference effects" between gravity and a 
gauge field (electromagnetic field) if the geometry is coupled in a covariant 
("many-dimensional") way to the fermion field (described by many- 
dimensional spinors). In this way we can get some "interference effects" 
between gravity and a gauge field via interactions with fermions. Such 
approaches have been considered and one gets "gravitational-electromag- 
netic effects" (Thirring, 1972; Kalinowski, 1981a, i984a), and in general 
"gravitational-gauge field effects." These effects are extremely small and 
cannot be observed using present experimental techniques. They provide a 
dipole electric moment for fermions, which results in P and PC breaking. 
Some problems connected to the minimal mass of a fermion in such a theory 
can be avoided by introducing a new kind of gauge derivative (Kalinowski, 
1981b, 1982a, 1983b, 1984a). 

However, none of these approaches can be considered as a true 
unification of gravity and other interactions. It seems that we have to deal 
with a change of notation. In some sense the five-dimensional Kaluza-Klein 
theory and its non-Abelian descendants are just "unified (many- 
dimensional) notations" for the Einstein and Maxwell (Yang-Mills) theory. 

This does not mean that the problem of a notation is not important. 
Recall that the notation problem played a fundamental role in the construc- 
tion of general relativity. One could not even imagine the invention of 
General Relativity without Minkowski space. Moreover, the Minkowski 
space notation of special relativity and the pre-Minkowski approach are 
equivalent [see, for example, Einstein's (1905) original paper]. This nota- 
tion/language is a geometry. Probably the same holds in the construction 
of "a true unification" of gravity and other interactions in a Kaluza-Klein 
manner. We have an appropriate notation (a geometrical language--multi- 
dimensional language) and we should look for an appropriate geometry. 
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Recall that Minkowski space is a flat Riemannian manifold and the appropri- 
ate geometry of General Relativity is a curved Riemannian geometry. 

Thus the present approach consists in finding such a geometry (such 
a Kaluza-Klein theory), and finding "interference effects" between gravity 
and gauge fields and their physical consequences. 

The most interesting problem occurs when this new Kaluza-Klein 
theory is considered as a realistic model of strong interactions. Thus I 
consider this theory as the source of the classical dielectric model of 
confinement, supposing that the structural group G = SU(3)c, and then 
adding spinor sources (quark fields). In this way the idea of confinement 
emerges from the physics in higher dimensions with a geometrical interpreta- 
tion. The Lagrangian of the nonsymmetric Jordan-Thiry theory, in the fiat 
space limit, resembles the soliton bag model Lagrangian. 

In the next section I consider the nonsymmetric Kaluza-Klein (Jordan- 
Thiry) theory as a proposal for the theory of strong interactions. 

2. THE NONSYMMETRIC KALUZA-KLEIN 
(JORDAN-THIRY) THEORY 

In the last few years a nonsymmetric Kaluza-Klein theory (Kalinowski, 
1983c,d) has been constructed together with its extension to the nonsym- 
metric Jordan-Thiry theory (an additional scalar field connected to the 
effective "gravitational constant") (Jordan, 1955; Thiry, 1951a; Lich- 
nerowicz, 1955). Non-Abelian extensions of the nonsymmetric Kaluza- 
Klein and Jordan-Thiry theories have been found (Kalinowski, 1983e, 
1984b). 

It was possible to extend the nonsymmetric Kaluza-Klein theory to 
the case with material sources (including s.pin sources) and to include such 
phenomena as spontaneous symmetry breaking and the Higgs mechanism 
(with two critical points for a Higgs potential) (Kalinowski, 1982b, 1983f, 
1984c). Thus it is possible to consider the "interference effects" between 
electroweak interactions (described by the geometrical version of the Wein- 
berg-Salam-Glashow model) and gravity. Simultaneously, this allows us 
to build a more realistic model of Grand Unification, including the gravita- 
tional field. 

The linear version of the nonsymmetric Kaluza-Klein and Jordan- 
Thiry theories has been found (Kalinowski and Mann, 1983, 1984). 

The first exact solutions in the five-dimensional (electromagnetic) case 
have been obtained (Kalinowski and Kunstatter, 1984; Mann, 1984). It was 
possible to find an extension of some earlier work to the case of the 
nonsymmetric Kaluza-Klein theory (Kalinowski, 1982c, d), i.e., an 
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introduction of fermion sources leading to the small "interference effects" 
mentioned in Section 1 (a dipole electric moment for fermions and PC 
breaking). 

This will be very helpful in finding a model of strong interactions, i.e., 
an extended QCD with "interference effects" between gravity and strong 
interactions. 

The nonsymmetric Kaluza-Klein and Jordan-Thiry theories have a 
well-defined geometry on a multidimensional manifold [five-dimensional 
in the electromagnetic case and (n+4)-dimensional in the non-Abelian 
case, n = dim G, where G is a gauge symmetry group]. The geometry in 
this theory is a geometry from Einstein's Unified Field Theory (Einstein, 
1945, 1951; Einstein and Strauss, 1946) in the Kaufman version (Kaufman, 
1955, 1956; Einstein and Kaufman, 1954). This version is known as the 
Einstein-Kaufman theory. In some sense this geometry is a multi- 
dimensional extension of the Einstein-Kaufman geometry. This geometry 
is defined on the gauge manifold (manifold of a principal fibre bundle) and 
is called the Einstein geometry. The nonsymmetric Kaluza-Klein (or 
Jordan-Thiry) theory is a generalization of the Kaluza-Klein (or Jordan- 
Thiry) theory and Einstein's Unified Field Theory. 

These theories realize a true unification of gravitational and gauge 
fields in the following sense: they not only unify a local gauge invariance 
principle and a local coordinate invariance principle, but they provide 
"interference effects" between gravitational and gauge fields (electromag- 
netic field in the five-dimensional case) as well. One has the following 
"interference effects": 

1. An additional term in the Lagrangian for the electromagnetic field 
equal to 2(gt~V]F,~)2 [for a gauge field it is equal to 21ab(g[~"]Ha~,,) X 
(g["~]Hbt3)], where F~v is the strength of the electromagnetic field 
and H ~  is the strength of the Yang-Mills field. 

2. A new energy-momentum tensor for an electromagnetic field (gauge 
field). 

3. Two field strength tensors for the electromagnetic (gauge) field, i.e., 
F ~  and H ~  (= H ~  and L~).  

4. The source in the second pair of Maxwell's (Yang-Mills') equations, 
i.e., a current j,(j~). 

5. The polarization of vaccum M~,,=-(1/4~)(H,,.-F,~,) [ M ~ =  
-(1/4~)(L~,,-H~,,)] with an interpretation as the torsion in the 
fifth dimension (in higher dimensions in the Yang-Mills case). 

6. An additional term in the equation of motion for a test particle 
(additional term for a Lorentz-force term in the electromagnetic 
case), as appears in the modified Kerner-Wong equation. 
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7. A dependence of the cosmological constant on a dimensionless 
constant/x with an asymptotic behavior 

const 
p(/z) 2 for large/z 

/z 

This constant in general is a rational function of /z ,  i.e., 

Pro0,) 
Qm+2(p,) 

Thus it is possible to avoid some problems with the enormous 
cosmological constant that appears in the classical approach, when 
Iz is chosen as a root of  the polynomial Pm or becomes sufficiently 
large (Kalinowski 1983e, 1984b). The constant/.~ is simultaneously 
a coupling constant between a skewon field gt~,-] and a Yang-Mills 
field in the linear approximation (Kalinowski and Mann, 1984). 

In the case of the nonsymmetric Jordan-Thiry theory one gets some 
additional effects: 

1. A Lagrangian for a scalar field ~ .  
2. An energy-momentum tensor for the scalar field ~ .  
3. Additional scalar forces in the equation of  motion for a test particle 

(generalized Kerner-Wong equation). 

The scalar field �9 is connected to the effective "gravitational constant" by 

Gefr = GN exp[--(n + 2 ) ~ ]  

where GN is the Newton constant. This field seems to be massive, with 
short-range behavior (Yukawa-like behavior) (Kalinowski, 1982b, 1983d, 
1984b; Kalinowski and Mann, 1983). In this way, there are no problems 
with the weak equivalence principle. 

Some details of  the nonsymmetric Kaluza-Klein (Jordan-Thiry) theory 
follow. 

Let P be the principal fibre bundle with structural group G, over 
space-time E with a projection or, and let us define on this bundle a 
connection w. Let us suppose that G is semisimple and that its Lie algebra 
g has a representation such that Tr[(X~) 2] is real and nonzero for every a. 
Here Tr is understood in the sense of the representation of the Lie algebra 

(it is better to say in the sense of the representation of its enveloping 
algebra). On the space-time E we define a nonsymmetric, real tensor such 
that 

g ~  = g(~.) + g[~,~] (1) 

g,~g~'~ = g~,~g~' = 8~  (2) 
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where the order  o f  indices is important.  We also define X two connect ions 
on E :  

- c ~  tx T 

(3) ~ _ - ~  ~oo~, 
- -  O)/3 - - ~ O e  

where 

I~ = lV~0 ~ = 1( W ~  - W ~ )  0~ (4) 

and O~ is a f rame on E. 
For  the connect ion o3~ we suppose the fol lowing condit ions:  

/)g~§ = / g g ~  - g ~ 8 ( ~ ( F ) O V  = 0 
(5) 

Q~(r)=0 
where E) is the exterior covariant  derivative with respect to to~- ~ and Q~v(F)-~ - 
is the torsion o f  o3~. 

Let us introduce a natural  frame on P (a horizontal  lift base) 

oA=("Fi'*(O~ 0 a =l~wa), 0</~  = const  (6) 

where w = waXa is a connect ion on P. It is convenient  to in t roduce the 
following notations.  Capital  Latin indices A, B, C run over 1, 2, 3 , . . . ,  n + 4, 
n = dim G. Lower case Greek indices run over 1, 2, 3, 4, and lower case 
Latin indices run over 5, 6 , . . . ,  n + 4 .  

N o w  let us turn to the nonsymmetr ic  metrizat ion o f  the bundle  P. 
According to Kalinowski (1983c-e, 1984b), we have 

"}lAB k 0 I~l.b/ 

where lab = h~b + pK~b, p = p(x)  > 0 is a scalar field on a space-time E, A = 2 
[A = (2/c2)x/GN in the cgs system of  units], and 

ha b c d = C, ,dCb~ (8) 

is a Ki l l ing-Caftan tensor on G, C~b are structure constants of the Lie 
algebra of the group G, 

[X,~, Xb] = C~bX~ (9) 

Kab = C~b Tr[(X~) 2] (10) 

is a skew-symmetric  tensor  on G (Kalinowski,  1983c-e; 1984b), and p is 
a dimensionless real constant.  

On  the bundle  P we define a 2-form of  the curvature for the connec-  
t ion w, 

f~ = h o r  dw = dw+~[w, w] _lraa a~ - 2 - - ~  ^O~Xa (11) 
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This form satisfies the Bianchi identity 

hor df~ = 0 (12) 

Now we define on P a connection wB a such that 

D T A +  B _  = D T A  B -- T A D Q D c ( F )  0 C = 0 (13) 

where to A = F a c  0 c. Here D is the exterior covariant derivative with respect 
to the connection to a and Q~c(F) is the tensor of  torsion for the connection 
to A. According to Kalinowski (1984b), we have 

(o~= { "n" (wt3)-  p labg L ~ O  I L~vO~'+p-lgt3~g'(~V)P'~Oa~ 
\ I b d g  (2Hrt3- Lvt3)O -Pg P,t~lbc 0 I-' ,~3fll~ V , ) ,ObV+t~  / 

(14) 

where 

Here 

= 

TP, d ~-y d _ /~/ d Id~g~.~g L~,~ + l~dg,~.g Lt3 :, - 21~ag,~g H t~ z, 

~a ~ a  c 
Wb -- Fb~O 

(15) 

(16) 

(17) 

g(~~ = 63 (18) 

is an inverse tensor for g(~t3)- .~so, 

" d  " d  1 d labF ac + lad Fcb = fl .aC bc (19) 

" d  ~ d  
r . c  = - r  ~o (20 )  

- d ( 2 1 )  Fad = 0 

According to Kalinowski (1984b), we define on P a second connection 

4 A A 8 A ~ , r  ( 2 2 )  
Wn = ~on-3(n  +2)  

According to Kalinowski (1984b), we write down the Moffat-Ricci curvature 
scalar for W A and we get 

( - g ) l / 2 n ( w )  = (_g), /2{/~(W) + e("+2)*/~(F) 

+ 8 ~ e-("+2)'VLvM + L~cal(~)} + O~K ~ (23) 
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where R(W) is the Moffat-Ricci curvature scalar for the connection W~ a, 
R(F) is the Moffat-Ricci curvature scalar for the connection o3~, and 

LyM = - ~ lab ( 2 H a H b  __ L a ~ H ~ )  (24) 

H a = gt~'~]H~.~ (25) 

L a~'~ = g'~gt3~L~t~ (26) 

R ( W )  is the Lagrangian in the nonsymmetric Jordan-Thiry theory, and 
LvM plays the role of the Lagrangian for the Yang-Mills field. R(F) plays 
the role of the cosmological constant and R(W) is the Lagrangian of the 
gravitational field in the nonsymmetric theory of gravitation. Lsca,(~) plays 
the role of the Lagrangian for the scalar field ~ .  

L~. plays the role of the second tensor of the Yang-Mills (gauge) field 
strength (Kalinowski, 1982b, 1982e, f, 1984b). 

Equation (16) expresses the relationship between tensors H i .  and L~.. 
a a This relationship is linear with respect to H . .  and L~.. and nonlinear with 

respect to g~. We have 

Lso~,(~) = (m~(~ ") + ngt""]g~.~(~r))~. �9 ~,~ (27) 

where 

m = lta~llta~] - n ( n  - 1) 

The field ~ is connected with the field p via 

0 = e-* (28) 

This field is related to the effective gravitational "constant," which now is 
a function of space-time. 

In the electromagnetic case G = U(1) we have similarly 

(-g) l /2R(W) = (_g)X/2{/~(lye') + e - S * [ 2 ( g O " q F ~ )  2 - H~"F~,,] + Lsca,(~)} 

+ O~,K ~" (29) 

where 

Lscal(~t r) = g[~Mgs~("~)@,~,,  g2",,~ (30) 

is a Lagrangian for the scalar field ~.  We have 

H "" = g '~" gt3" H,~o (31) 

g~g~'~H w + g,~g ~'H~v = 2g,~g S"/F~r 
(32) 

Ht3 v = _ _  Hvt 3 

F~. is the strength of the electromagnetic field, 

F,,~ = O ~At3 - O t3A ~ (33) 

where A~ is a 4-potential of the electromagnetic field. H~,. is a second tensor 
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of the electromagnetic field strength (Kalinowski, 1983e). The field �9 is 
related to the field p by the formula (28) and the effective gravitational 
constant is expressed by 

G~ = GNe -3~ (34) 

If  we put �9 = 0, we get the nonsymmetric Kaluza-Klein theory (Kalinowski, 
1983c-e, 1984b). 

From the Palatini variational principle for (23) we get the field equations 
(Kalinowski, 1984b) 

gauge seal 
R~..(ffC)-�89 T~.. + T.,,(*)+g.,,qb] (35) 

gtU] = 0; g.~.~ - g ~ F ~  - - ~ , g , , c F ~  = 0 ( 3 6 )  

gauge gauge 
V~(L ) V~ (g[~'~lH~) 

- ( n  + 2)0o*[L ~~ - 2g[~ 

[( n + 2m )~("~*) - ng"~'ga,,ff, (~'8) ] ax a)~'Ox 

=0 

where 

- - 4 , S a l ~ L  a-" aa l .~v-- '~ 'k ,5  J ~  l . L v / ' , 6  J '[  V S / - I J  

is the energy-momentum tensor for the gauge (Yang-Mills) field, 

seal e (n+2)xI~" 
T.~(*) = ~ [gK,.goo +g,~gK#)g(W)g (~'~ 

(37) 

(38) 

(39) 
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- (g g.~- 6~)~ , ,  + m~, , ]~ ,7  X ~ ~ 

- g<~a (rn~,(~'")+ ngt~<"~g~<g(va))~ . ~ , }  (40) 

is the energy-momentum tensor for the scalar field qb, and 

= e2(~+2)~ ,/~(~) : e2("+z)'t'p(#~) 
16zr 

(41) 

is the cosmological term. If  �9 = 0, p =1, 

K = e -(n+2)* --- Get I (42) 

gauge 

We put GN = C = 1. In these equations V~ means gauge derivative; 

L~..  = (_g)l/2Lam,; g[~] = (_g)W2g[~,q (43) 

[Kalinowski (1984b) for more details]. 
Thus we get a theory that unifies gravity, gauge fields, and scalar forces. 

The gravitational field in this theory is described by a nonsymmetric, real 
tensor g , ,  (and a scalar field ~ ) ,  which connects it with Moffat's theory of 
gravitation [one of the most important alternative theories of  gravitation; 
see Moffat (1982) for a review]. The nonsymmetric Kaluza-Klein (Jordan- 
Thiry) theory has been previously designed as a unification of Moffat's 
theory of  gravitation and the electromagnetic (or Yang-Mills) field. 
However, there are some differences. First, Moffat and his co-workers make 
extensive use of the theory of Einstein and Strauss (1946) in a hypercomplex- 
Hermitian version (Kunstatter et al., 1983), but not that of Einstein and 
Kaufman (1954). The Einstein-Strauss theory cannot be extended in any 
simple way to higher dimensions, even in the five-dimensional (electromag- 
netic) case. It is also a hard task to incorporate spin sources in the Einstein- 
Strauss theory. In both cases, we face a fundamental physical problem. The 
Lagrangian becomes hypercomplex (not real). In the present case these 
problems do not arise, because everything is real. In the case of the nonsym- 
metric Jordan-Thiry theory, one effectively gets the scalar-tensor theory of 
gravitation in the nonsymmetric version. The scalar field behaves very well 
in the linear approximation. It has been proved (Kalinowski and Mann, 
1983) that one can avoid tachyons and ghosts in the particle spectrum of 
the theory (if one puts m > 0). In the case of  classical Jordan-Thiry theory, 
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the scalar field is a ghost (a negative kinetic energy). This new version of 
the Kaluza-Klein theory is capable of removing singularities from the 
solution of coupled gravitational and Yang-Mills equations even in the 
case of spherical symmetry. Such solutions have been found in the elec- 
tromagnetic case (Kalinowski and Kunstatter, 1984; Mann, 1984). It is well 
known that in the case of Einstein-Maxwell equations one cannot get any 
nonsingular, localizable, stationary solutions (the so-called Hilbert-Levi- 
Civita-Thiry-Einstein-Lichnerowicz-Pauli  theorem) (Hilbert, 1916; Levi- 
Civita, 1917; Lichnerowicz, 1939; Einstein and Pauli, 1943). This result has 
been recently extended to the case of non-Abelian gauge fields (Weder, 
1982). 

Recently, Mann (1984) found eight classes of  spherically symmetric 
and stationary solutions in the nonsymmetric Kaluza-Klein theory. These 
solutions are more general than the result of Kalinowski and Kunstatter 
(1984) and some of them have no singularities in gravitational and elec- 
tromagnetic fields. Some of these solutions possess a nonzero magnetic field 
and n o n z e r o  g[23] = f ~  0. The nonsingular solutions are parametrized by 
fermion charge 12, electric charge Q, and a new constant Uo. This constant 
is related to gE23j in the same way that 12 is related to gD4]- It plays a similar 
role for gt~,~l that a magnetic charge plays for F,~. Note that the first exact 
solution found in Kalinowski and Kunstatter (1984) has no singularity in 
an electric field and a finite energy. However, it has a weak singularity in 
g(,o). In this case one puts g[23] = 0. It seems that these solutions can be 
extended without any problems to the non-Abelian case. 

Thus one can look for models of elementary particles as exact solutions 
of field equations. 

In the theory there are two field strengths for the electromagnetic 
(Yang-Mills) field: F ~  and H ~  (H~,~ and L~,~). The first is built from (E, 
B) [(E ~, B~)] and the second from (D, H) [(D a, Ha)]. The relations between 
both tensors are given by equations (16) and (32). 

According to current ideas (Kogut, 1983; Lee, 1979, 1981) the 
confinement of color could be connected to the dielectricity of  the vacuum 
(dielectric model of confinement). Due to the so-called antiscreening 
mechanism, the effective dielectric constant is equal to zero. This means 
that the energy of an isolated charge goes to infinity. Now there are also 
so-called classical dielectric models of confinement (Lehman and Wu, 1983). 
The confinement is induced by a special kind of dielectricity of the vacuum 
such that E ~ 0 and D = 0 (E a ~ 0, D a = 0). In this case there is no distribution 
of  charge. This is similar to an electric type of Meissner effect. 

It is easy to see that in the present case (the nonsymmetric Kaluza-Klein 
theory) the dielectricity is induced by the nonsymmetric tensors g.~ and 
lab. If g~,~l = 0, D = E and B = H. 
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The gravitational field described by the nonsymmetric tensor g ~  
behaves as a medium for an electromagnetic field (gauge field). The condi- 
tion E ~ 0, D = 0 (E"~  0, D a=  0) can be satisfied in the axial, stationary 
case for F~,, H~v ( H ~ ,  L~v), and g,~. Thus it is interesting to find an exact 
solution with axial symmetry for the nonsymmetric Kaluza-Klein theory 
with fermion sources for G = SU(3)c. This could provide a model of a 
hadron. 

The axially symmetric, stationary case seems to be very interesting from 
a more general point of view. In General Relativity one has very peculiar 
properties of stationary, axially symmetric solutions of the Einstein- 
Maxwell equations. These solutions describe the gravitational and elec- 
tromagnetic fields of a rotating charged mass. Thus, one gets the magnetic 
field component. Asymptotically (these solutions are asymptotically fiat) 
the magnetic field behaves as a dipole field. One can calculate the gyromag- 
netic ratio at infinity, i.e., the ratio of the magnetic dipole moment and the 
angular momentum moment. It is worth noticing that one gets the anomalous 
gyromagnetic ratio (Kramer et al., 1980), i.e., the gyromagnetic ratio for an 
electron (for a charged Dirac particle). One cannot interpret the Kerr- 
Newman solution as a model of the fermion, for there is a singularity. In 
the nonsymmetric Kaluza-Klein theory one can expect completely nonsin- 
gular solutions (Kalinowski and Kunstatter, 1984; Mann, 1984). One can 
also expect the asymptotic behavior of the Einstein-Maxwell theory. Thus 
it seems that one will probably get the solutions with anomalous gyromag- 
netic ratio. Such a solution could be treated as a model (classical) of a 
spin -1 particle. In the non-Abelian case [G = SU(3)c x U(1)em] this could 
provide a model of a charged baryon (i.e., proton), where the skewon field 
gt ,~ induces a confinement of color. In this way, the skewon field gt,~J 
plays a double role: (1) additional gravitational interactions (from Moffat's 
theory of gravitation), and (2) a strong interaction field connected to the 
confinement problem. 

It has been proved by Mann and Moffat (1982a,b) that the skewon 
field gt~J has zero spin. In a linear approximation it is the so-called 
generalized Maxwell field (an Abelian gauge field). Thus it is natural to 
expect an exchange of some spin-zero particles in the nucleon-nucleon 
potential for low and intermediate energies. Such particles are not observed. 
However, one cannot fit experimental data for the nucleon-nucleon interac- 
tion without the mysterious o'- (spin-zero) particles (see, for example, Bryan 
and Scott, 1964; Brown, 1972; Mau Vinh, R., 1978; Rho, 1984). 

It happens that two such particles are needed in order to fit the data. 
In the present proposal, they are connected to the skewon field gt~vl and 
to the scalar field ~ from the nonsymmetric Jordan-Thiry theory. The 
reason such particles are not detected directly now seems clear. They are 
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confined, because they are actually a cause of confinement. The scalar field 
from the nonsymmetric Jordan-Thiry theory induces an additional dielec- 
tricity of the vacuum [see the Lagrangians for the scalar field �9 and for 
the Yang-Mills field in equations (23), (24), and (27)]. Note that a function 
of the scalar field �9 appears as a factor before the Yang-Mills Lagrangian 
in equation (23). This has some important consequences: the effective 
gravitational "constant" depends on �9 and in the fiat space limit g , ,  = rl,~ 
the Lagrangian resembles the bosonic part of the soliton bag model 
Lagrangian if one puts 

e-l~ = 2(1 ----~;  O-o = const (44) 
\ O-o/ 

for n = 8, G = SU(3) (De Tar and Donoghue, 1983; Goldflam and Wilets, 
1982). One finds 

1 ln(1-~oo) ln2 (45) 
10 10 

and in the flat space limit one easily gets 

L = _ l ( l _ ~  2r,,~v ~r_t. t.rb~, [,Z l X _ b r ~ c a l l J t l ~ V l ~ t  
,4 \ t ro /  

O, op(~ ,  ) . m ~  
q" 16~r(tr o -  tr) t- 100(o%-- o.)a r/~~ " o-~ (46) 

The full Lagrangian (23) is more general and it contains a gravitational field. 
Friedberg and Lee (1978) consider the soliton bag model with a more 

general factor K(o-), 

1 alxv b 1 L=-zK(o')habH H~,,-~a~,tra o-- U(tr) (47) 

They consider that the scalar field ~r is a new dynamical field with self- 
interaction given by U(tr). The quantity K is a dielectric constant which 
depends on tr. It is interesting to observe the many similarities between (47) 
and the Lagrangian from the nonsymmetric Jordan-Thiry theory, i.e., (23). 
Thus, in the present model one has in the flat space limit an effective 
dielectric constant 

Kel  I = 4e -1~ (48) 

It is interesting to notice that the scalar field �9 enters into the effective 
gravitational "constant" and into the effective dielectric "constant" in the 
fiat space limit. 
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In a full nonsymmetric Jordan-Thiry theory (curved non-Riemannian 
space-time) one has the following symmetry for the scalar field (Kalinowski, 
1983d, 1984b): 

~ ~ '  = f ( ~ )  (49) 

where f is an arbitrary function. In this way the formulas (44) and (48) can 
be treated as transformations for a scalar field in the nonsymmetric Jordan- 
Thiry theory. Thus it is possible to connect a bosonic part of some soliton 
bag model Lagrangians via equation (49) in the nonsymmetric Jordan-Thiry 
theory. In this way one can see some possibilities of connecting gravitational 
and strong interactions via the nonsymmetric Kaluza-Klein (Jordan-Thiry) 
theory. This is somewhat in the spirit of an idea of strong gravity (Isham 
et al., 1978). In this approach, there are two metric (symmetric) tensors. It 
is easy to see that in the nonsymmetric Kaluza-Klein (Jordan-Thiry) theory 
there are two metric (symmetric) tensors g(~o) and f~o such that 

f~og(~V) = t~; g,~t3g,~'y = gg~,gV,~ = ~ (50) 

and it is easy to see that if g[~0] = 0, then f ,  t3 = g(~0). 
Thus I propose the Lagrangian of the nonsymmetric Jordan-Thiry 

theory as the bosonic part of the Lagrangian of strong interactions. Why? 
It seems that something is missing in the QCD Lagrangian. One has the 
following objectives: (1) (r-particles (which were mentioned earlier), and 
(2) an exact solution with color radiation (this means color at infinity--no 
confinement) as found by Tafel and Trautman (1983). 

Thus it seems that the QCD Lagrangian is incomplete in the bosonic 
part. In the present proposal, the QCD Lagrangian is replaced by the 
Lagrangian from nonsymmetric, non-Abelian Jordan-Thiry theory for G = 
SU(3)c. In this way one can get a dielectric model of confinement and a 
soliton bag model-like Lagrangian (De Tar and Donoghue, 1983; Goldflam 
and Wilets, 1982; Friedberg and Lee, 1978). 

Thus I propose the following program of investigation: 

1. Find exact solutions of the nonsymmetric Kaluza-Klein and Jordan- 
Thiry theories in Abelian and non-Abelian cases with and without 
fermion sources in the case of spherical and axial symmetry, using 
inverse scattering, and the Riemann invariants method. 

2. Find an effective interaction of two axially symmetric solutions 
exactly, or, using some numerical methods in the case of G = SU(3)c, 
with fermion sources. This could be similar to the nucleon-nucleon 
interaction in the Skyrme model. The solutions sould be treated as 
particles using a collective coordinate method. 

3. Find wavelike solutions of the field equations in the Abelian and 
non-Abelian cases. In the electromagnetic case, this could offer a 
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solution that could be treated as a kind of electromagnetogravitao 
tional wave (nonlinear wave) with nontrivial interactions between 
all fields. The objective of this hope is related to points 4 and 5 in 
the list of "interference effects" in Section 2 (recall that the displace. 
ment current in the classical Maxwell equations leads to the non- 
trivial interaction between the electric and magnetic fields--the 
raison d 'e tre  of the wave solutions for the Maxwell equations; 
however, this is only a historical remark). By a nontrivial interaction, 
I mean that the flow of energy is possible from one field to the 
second in a quasiperiodic way. 

There are also some proposals concerning cosmology: 

1. Find a Bianchi type I cosmological solution in the nonsymmetric 
Kaluza-Klein theory with material sources (Kalinowski, 1984c). 
One expects completely nonsingular solutions in the presence of 
an electromagnetic field. 

2. Find a new (or old) inflationary scenario for the Universe from the 
nonsymmetric, non-Abelian Kaluza-Klein theory. It has been shown 
(Kalinowski, 1983f) that one can get a Higgs potential with two 
critical points from the nonsymmetric Kaluza-Klein theory. This 
offers phase transitions in early cosmology and could give Guth's 
new (or old) inflationary scenario without the Coleman-Weinberg 
theory. 

It is also interesting to do some research under the formal structure of 
the nonsymmetric Kaluza-Klein and Jordan-Thiry theories: 

1. A rigorous treatment of the nonsymmetric tensor lab = h~b + IxK~b 
defined on the algebra of matrices (enveloping algebra of the Lie 
algebra of the gauge symmetry group). 

2. An extension of the nonsymmetric Kaluza-Klein and Jordan-Thiry 
theories including supergravity and supersymmetry [some ideas on 
how to do this can be found in Kalinowski (1984c) and Goldflam 
and Wilets (1982)]. 

3. Studies under a spontaneous compactification of an n-dimensional 
submanifold of an (n+4)-dimensional manifold with Einstein 
geometry (a global or/and local compactification). 

3. CONCLUSIONS 

In this paper I have proposed the Lagrangian of the nonsymmetric, 
non-Abelian Jordan-Thiry theory as the bosonic part of the Lagrangian of 
strong interactions. In this way the QCD Lagrangian would be extended, 
including the skewon field gt~l and the scalar field ~.  Both fields gt,~l and 
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play double roles: (1) as a part of gravitational interactions, and (2) as 
a part of a strong interaction field. The existence of gE~l and �9 could 
explain (in principle) the o--particles in a nucleon-nucleon potential and a 
confinement of color via the classical dielectric model of confinement. It is 
possible on the level of the nonsymmetric Jordan-Thiry theory to connect 
some soliton bag models via transformation of the scalar field q~. 

I have proposed a program of research that consists in finding exact 
solutions in this theory. These solutions could be treated as models of 
particles [generalized skyrmions (Skyrme, 1961; Adkins et al., 1982)]. The 
present approach seems more realistic, because it includes the Lagrangian 
gauge and gravitational fields. In the Skyrme model one has to deal with 
an effective model of strong interactions. This model, despite many spec- 
tacular successes, has some problems, for example, a mass difference 
between the nucleon and A 2+ particle. Moreover, the interactions between 
two skyrmions can give a qualitatively good description of the nucleon- 
nucleon potential (Rho, 1984). In this way it is possible to approach some 
classical nuclear phenomenology as in Thomas (1982). 

One could search for axially symmetric, stationary solutions in the 
nonsymmetric Kaluza-Klein (Jordan-Thiry) theory using the formalism 
presented in Mihich (1983). Finally, some of Witten's (1981) ideas can be 
employed for the nonsymmetric Kaluza-Klein (Jordan-Thiry) theory. 
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